悟空视频

    在线播放云盘网盘BT下载影视图书

    机器学习线性代数基础: Python语言描述 - 图书

    导演:张雨萌
    数学是机器学习绕不开的基础知识,传统教材的风格偏重理论定义和运算技巧,想以此高效地打下机器学习的数学基础,针对性和可读性并不佳。 本书以机器学习涉及的线性代数核心知识为重点,进行新的尝试和突破:从坐标与变换、空间与映射、近似与拟合、相似与特征、降维与压缩这5个维度,环环相扣地展开线性代数与机器学习算法紧密结合的核心内容,并分析推荐系统和图像压缩两个实践案例。 本书在介绍完核心概念后,还将线性代数的应用领域向函数空间和复数域中进行拓展与延伸;同时极力避免数学的晦涩枯燥,充分挖掘线性代数的几何内涵,并以Python语言为工具进行数学思想和解决方案的有效实践。 本书适合实践于数据分析、信号处理等工程领域的读者,也适合在人工智能、机器学习领域进行理论学习和实践,希望筑牢数学基础的读者,以及正在进行线性代数课程学习的读者阅读。
    机器学习线性代数基础: Python语言描述
    图书

    线性代数与优化: 机器学习视角 - 图书

    导演:Charu C. Aggarwal
    本书从机器学习视角,系统梳理线性代数与最优化理论,直击初学者“知识零散、课程脱节”的痛点。全书以“应用导向”贯穿始终,分两大模块构建知识网络: 1.线性代数及其应用:从矩阵运算本质出发,深入剖析奇异值分解(SVD)、核方法、图谱理论等工具,通过人脸识别、推荐系统等案例,展现线性代数在特征提取、降维、异常检测中的核心作用。 2.最优化理论及其应用:以最小二乘回归为支点,辐射梯度下降、牛顿法、约束优化等算法,揭示支持向量机、Logistic回归的数学原理,并延伸至神经网络训练中的计算图优化技术。 作者独创“概念即时应用”模式,每章配以“理解题”与“综合习题”,确保读者在真实问题中内化知识,实现从数学公式到算法代码的无缝衔接。
    线性代数与优化: 机器学习视角
    搜索《线性代数与优化: 机器学习视角》
    图书

    机器学习中的概率统计: Python语言描述 - 图书

    2020
    导演:张雨萌
    本书围绕机器学习算法中涉及的概率统计知识展开介绍,沿着概率思想、变量分布、参数估计、随机过程和统计推断的知识主线进行讲解,结合数学的本质内涵,用浅显易懂的语言讲透深刻的数学思想,帮助读者构建理论体系。同时,作者在讲解的过程中注重应用场景的延伸,并利用Python工具无缝对接工程应用,帮助读者学以致用。 全书共5章。第1章以条件概率和独立性作为切入点,帮助读者建立认知概率世界的正确视角。第2章介绍随机变量的基础概念和重要分布类型,并探讨多元随机变量间的重要关系。第3章介绍极限思维以及蒙特卡罗方法,并重点分析极大似然估计方法以及有偏无偏等重要性质,最后拓展到含有隐变量的参数估计问题,介绍EM算法的原理及其应用。第4章由静态的随机变量过渡到动态的随机过程,重点介绍马尔可夫过程和隐马尔可夫模型。第5章聚焦马尔可夫链-蒙特卡罗方法,并列举实例展示Metropo...(展开全部)
    机器学习中的概率统计: Python语言描述
    搜索《机器学习中的概率统计: Python语言描述》
    图书

    Python机器学习 - 图书

    2021计算机·编程设计
    导演:塞巴斯蒂安·拉施卡 瓦希德·米尔贾利利
    本书自第1版出版以来,备受广大读者欢迎。第3版结合TensorFlow 2和scikit-learn的最新版本进行了更新,其范围进行了扩展,以涵盖强化学习和生成对抗网络(GAN)这两种最先进的机器学习技术。与同类书相比,本书除了介绍如何用Python和基于Python的机器学习软件库进行实践外,还讨论了机器学习概念的必要细节,同时对机器学习算法的工作原理、使用方法以及如何避免掉入常见的陷阱提供了直观且翔实的解释,是Python机器学习入门必读之作。书中涵盖了众多高效Python库,包括scikit-learn、Keras和TensorFlow等,系统性地梳理和分析了各种经典算法,并通过Python语言以具体代码示例的方式深入浅出地介绍了各种算法的应用,还给出了从情感分析到神经网络的一些实践技巧,可帮助读者快速解决自己和团队面临的一些重要问题。本书适用于机器学习的初学者和专业技术人员。
    Python机器学习
    搜索《Python机器学习》
    图书

    python机器学习 - 图书

    导演:Sebastian Raschka
    Sebastian Raschka是密歇根州立大学的博士生,他在计算生物学领域提出了几种新的计算方法,还被科技博客Analytics Vidhya评为GitHub上具影响力的数据科学家。他有一整年都使用Python进行编程的经验,同时还多次参加数据科学应用与机器学习领域的研讨会。正是因为Sebastian 在数据科学、机器学习以及Python等领域拥有丰富的演讲和写作经验,他才有动力完成此书的撰写,目的是帮助那些不具备机器学习背景的人设计出由数据驱动的解决方案。 他还积极参与到开源项目中,由他开发完成的计算方法已经被成功应用到了机器学习竞赛(如Kaggle等)中。在业余时间,他沉醉于构建体育运动的预测模型,要么待在电脑前,要么在运动。
    python机器学习
    搜索《python机器学习》
    图书

    Python机器学习 - 图书

    导演:[美]塞巴斯蒂安·拉施卡
    适读人群: 想进入机器学习领域的初学者; 计算机及相关专业的学生; 想要向机器学习工程师、数据科学家转型的非开发岗人员; 使用过机器学习技术,但想要更加深入了解其工作原理的人员; 其他对机器学习、人工智能有兴趣的自学者 本书是使用Python进行机器学习和深度学习的全面指南。它既可以用作清晰的分步教程,也可以作为构建机器学习系统时常用的参考手册。本书包含清晰的解释、图表和工作示例,全面深入地介绍了机器学习的基本技术,并且给出了机器学习背后的原理,使你可以自己建立模型和应用程序。第3版结合TensorFlow 2和scikit-learn的新版本进行了更新,涵盖强化学习和生成对抗网络(GAN)这两种先进的机器学习技术。 机器学习将改变你解决问题的思路,并让你看到如何释放数据的力量来解决问题。无论你是Python机器学习的初学者还是想加深自己对前沿发展的...(展开全部)
    Python机器学习
    搜索《Python机器学习》
    图书

    Python机器学习 - 图书

    2021计算机·编程设计
    导演:塞巴斯蒂安·拉施卡 瓦希德·米尔贾利利
    本书自第1版出版以来,备受广大读者欢迎。第3版结合TensorFlow 2和scikit-learn的最新版本进行了更新,其范围进行了扩展,以涵盖强化学习和生成对抗网络(GAN)这两种最先进的机器学习技术。与同类书相比,本书除了介绍如何用Python和基于Python的机器学习软件库进行实践外,还讨论了机器学习概念的必要细节,同时对机器学习算法的工作原理、使用方法以及如何避免掉入常见的陷阱提供了直观且翔实的解释,是Python机器学习入门必读之作。书中涵盖了众多高效Python库,包括scikit-learn、Keras和TensorFlow等,系统性地梳理和分析了各种经典算法,并通过Python语言以具体代码示例的方式深入浅出地介绍了各种算法的应用,还给出了从情感分析到神经网络的一些实践技巧,可帮助读者快速解决自己和团队面临的一些重要问题。本书适用于机器学习的初学者和专业技术人员。
    Python机器学习
    搜索《Python机器学习》
    图书

    python机器学习 - 图书

    导演:Sebastian Raschka
    Sebastian Raschka是密歇根州立大学的博士生,他在计算生物学领域提出了几种新的计算方法,还被科技博客Analytics Vidhya评为GitHub上具影响力的数据科学家。他有一整年都使用Python进行编程的经验,同时还多次参加数据科学应用与机器学习领域的研讨会。正是因为Sebastian 在数据科学、机器学习以及Python等领域拥有丰富的演讲和写作经验,他才有动力完成此书的撰写,目的是帮助那些不具备机器学习背景的人设计出由数据驱动的解决方案。 他还积极参与到开源项目中,由他开发完成的计算方法已经被成功应用到了机器学习竞赛(如Kaggle等)中。在业余时间,他沉醉于构建体育运动的预测模型,要么待在电脑前,要么在运动。
    python机器学习
    搜索《python机器学习》
    图书

    Python机器学习 - 图书

    导演:[美]塞巴斯蒂安·拉施卡
    适读人群: 想进入机器学习领域的初学者; 计算机及相关专业的学生; 想要向机器学习工程师、数据科学家转型的非开发岗人员; 使用过机器学习技术,但想要更加深入了解其工作原理的人员; 其他对机器学习、人工智能有兴趣的自学者 本书是使用Python进行机器学习和深度学习的全面指南。它既可以用作清晰的分步教程,也可以作为构建机器学习系统时常用的参考手册。本书包含清晰的解释、图表和工作示例,全面深入地介绍了机器学习的基本技术,并且给出了机器学习背后的原理,使你可以自己建立模型和应用程序。第3版结合TensorFlow 2和scikit-learn的新版本进行了更新,涵盖强化学习和生成对抗网络(GAN)这两种先进的机器学习技术。 机器学习将改变你解决问题的思路,并让你看到如何释放数据的力量来解决问题。无论你是Python机器学习的初学者还是想加深自己对前沿发展的...(展开全部)
    Python机器学习
    搜索《Python机器学习》
    图书

    Python机器学习 - 图书

    2020计算机·编程设计
    导演:柯博文
    《Python机器学习(微课视频版)——手把手教你掌握150个精彩案例》由浅入深、图文并茂地介绍了Python机器学习方面的相关内容,并通过150多个实际案例,手把手地教会读者掌握用Python语言进行机器学习相关项目开发的方法与技巧。 书中包含Python语言基础内容、机器学习、人工智能、TensorFlow、Keras、OpenCV等相关API的使用方法,给出的每个案例都可以单独运行,可进行二次开发。 为了提高学习效果,本书为所有案例提供了完整的微课视频和程序代码文件,获取方式见前言。 《Python机器学习(微课视频版)——手把手教你掌握150个精彩案例》适合学习机器学习算法的初学者,对机器学习、人工智能感兴趣的学生和从业者,以及进行机器学习相关项目开发的工程师阅读参考。
    Python机器学习
    搜索《Python机器学习》
    图书
    加载中...